

IMTEX 2024

Cold forming techniques for lightweight components

ABOUT US

page 2

THE FELSS GROUP The Felss Group is represented worldwide.

THE FELSS GROUP The key figures at a glance.

Seite 3

ABOUT US

ROTARY SWAGING

ROTARY SWAGING **Moving parts ...**

- The central swaging shaft holding the base jaws, wedges and forming tools represents the first rotating unit.
- The second one is the outer ring.
- The rollers and the roller cage itself are not self-driven, they rotate at the combined speed of the outer ring and the central swaging shaft.

APPLICATION SAMPLE

ROTARY SWAGING Material where it is needed ...

Characteristics:

- Reduced diameters
- Variable wall thickness
- Transitions and edgy geometries
- Special inner geometries

Basic applications

Solid shaft	Hollow shaft	Two-sided end	Square shaft
Back stitch	Ball shape	Hexagon	Hexagonal transition
Closed end		Key wrench	Permanent connection
Variable wa	ll thicknes	Inner toothing	Hose connector

ROTARY SWAGING Suitable materials and blanks

- Seamless or welded tubes
- Solid bars
- Tensile strength (Rm) up to 1,100 MPa
- Elongation at fracture (A5) min. 10 %
- Only metal

ROTARY SWAGING **Dimensional and surface tolerances**

page 9

		Tolerance grade							
		IT4	IT5	IT6	IT7	IT8	IT9	IT10	IT11
from	to	Tolerance zone width (in μ m)							
	3	3	4	6	10	14	25	40	60
3	6	4	5	8	12	18	30	48	75
6	10	4	6	9	15	22	36	58	90
10	18	5	8	11	18	27	43	70	110
18	30	6	9	13	21	33	52	84	130
30	50	7	11	16	25	39	62	100	160
50	80	8	13	19	30	46	74	120	190
80	120	10	15	22	35	54	87	140	220

AXIAL FORMING

AXIAL FORMING Basic principle in axial forming: stationary workpiece, moving tool

page 11

Characteristics:

- Fixed clamping device
- Mandrel to reenforce the inner diameter
- Moveable forming die
- Helical movement possible

AXIAL FORMING The tool can form outside or inside, the principle always remains the same

٠

•

page 12

AXIAL FORMING Application samples

Characteristics:

- Solid and hollow parts
- Whether involute splines, serrations, ball tracks ... the essential factor is symmetry in axial direction
- Block voids and block teeth must be separately designed

Involute spline (solid part)

Involute spline (hollow part)

Serration (hollow part)

Involute spline in a blind hole

Spline on an internal geometry

Ball tracks

AXIAL FORMING Dimensional and surface tolerances

page 14

Standard	Tolerance class (mod)
ANSI B92.1	5
ISO 4156	5
DIN 5480	8

(mod) \rightarrow The flank deviation can be higher than specified in the standards because the choice of material and the reinforcement situation can have negative effects

With reference to $I\beta$ = 30mm, flank line deviations of 16 µm and better are to be classified as realistic and verifiable results.

APPLICATION SAMPLE

COMBINED FORMING TERCHNIQUES Rotor shafts

Rotor shafts - core pieces of the electrical drive

- Felss developed more than 50 successful process developments for swaging and forming of rotorshafts
- Rotor shafts currently in mass production at Felss Germany
- Short cycle times have been proven throughout the history of these developments

page 16

COMBINED FORMING TERCHNIQUES Hollow side shafts

Usage of hollow drive shafts

- Transmitting engine power to the wheels
- Felss developed more than 100 shaft designs with OEM's, Tier 1 and Tier 2
- All of these shafts are hollow

COMBINED FORMING TERCHNIQUES Steering shafts

Usage of hollow steering shafts

- Allowing the adjustment of steering components
- Large variety of possible shaft designs with OEM's, Tier 1 and Tier 2
- Approx. 30% weight reduction with optimization of wall thicknesses

THANK YOU ...

... for your attention.

www.felss.com